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Exercise 1: The Distortion Energy Criterion of yielding assumes that yielding starts when the 
distortion energy at a point in a solid becomes equal to the distortion energy at yield in simple 
tension of the same material.  

(1) Show that the energy of distortion per unit volume for the general loading can be 
expressed as,  
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(2) If the yield stress of the material in uniaxial tension is Yσ show that this criterion is 
expressed as, 
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Solution 

The strain energy density in terms of stresses is, 
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From Hook’s law, 
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Combing the terms in the first two brackets, and replacing / 2(1 )E v= +µ  we obtain 
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In uniaxial tension we have 
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Setting equal the right hand side of the two last expressions, we obtain (b). 
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Exercise 2: The stress state at a point of a solid is  
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where ,σ τ are given stress. What is the yield condition according to (a) Tresca and (b) V Mises 
criteria?  

Solution 

From the given stress matrix we can see that one of the principal stresses is σ and the other two 
are 
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Exercise 3: A thick-walled cylinder, with open ends, internal radius ir   and external radius 2 ir  is 
subjected to internal pressure iP . The tensile yield stress of the material is Yσ . Determine the 
internal pressure at the onset of yielding using the Tresca and V Mises yield criteria. Calculate 
the displacement at the onset of yielding at the internal surface of the cylinder (modulus of 
elasticity and Poisson ratio ,E v  are known). 

Solution 

The maximum stresses are at the internal surface of the cylinder. They are given by,  

 

For 0eP =  and the given radii, we obtain 

( )
( )

( )
( )

( )
( )

( )
( )

22 2
2

2 222 2

22 2
2

2 222 2

21 1 4
2 2

21 51 4
32 2

i i i i i
rr i i i

ii i i i

i i i i i
i i i

ii i i i

Pr r PrPr P
rr r r r

Pr r PrPr P
rr r r rθθ

σ

σ

 
= − = − = − 

 − − 
 

= + = + = 
 − − 

 

They are also principal stresses.  

V Misses criterion, 
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Tresca Criterion 
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Exercise 4: Express the plastic strain increment ratios for  

(1) Simple tension  11 Yσ σ=   

(2) Biaxial stress with 11 22 33 12 23 13/ 3, / 3, 0  Y Yσ σ σ σ σ σ σ σ= − = = = = =  
(3) Pure shear 12 Yσ σ=  

Solution 

The plastic strain increment ratios are given by, 

 31 2

1 2 3

pp p dd d d
s s s

εε ε λ= = =  (Appendix C)     (C.24a) 

Here ( 1,2,3)  is i =  are the principal values of the deviatoric stress tensor. 
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The term with the second component is considered zero because the when the denominator is 
zero, the numerator is taken as zero in the theory.  

(3) In simple shear we have 12 Yσ σ=  
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Solutions of problems from a previous examination 

Problem A:  

Stresses: We have here a problem of plane stress. We assume the following stress filed, 

11 11 2 22 12( ), 0    σ σ x σ σ= = =         (a) 

This stress field satisfies the equilibrium equations,  
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The compatibility equation is,  
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Integrating we obtain, 11 1 2 2 11 1 2 2σ αET c x c σ αET c x c+ = + ⇒ = − + +   (c)  
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BC: At the free ends we have the normal force and moment both equal zero, 
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Substituting (c) in (d) we obtain the constants, 
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Note that when T const= , the stress is zero because the second integral is zero and the first one 
is equal to –T).  
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Problem B:  

1: Because of the parallel arrangement,  e vσ σ σ= + . e vε ε ε= =  

For the spring  e eσ Eε= ; For the dashpot v
v v

dσ η η
dt
ε ε= = 

 

We add these stresses and set the strains equal we obtain for the Kelvin-Voigt model, 

Eσ ε ηε= +      

2: With the configuration of the elements in the Figure we can write, 

 1 2ε ε ε+ =          (a1) 

1 2σ σ σ= =          (a2) 

1 1 1σ σ η ε= =     for the dashpot     (b) 

2 2 2 2 2Eσ σ ε η ε= = +    for the Kelvin-Voight     (c) 

From (a1) and (b) we can write, 
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Introduce (d) in (c) and rewrite, 
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       

   

 


